D=AOS4 144 STANFORD UNIV CALIF DEPY OF COMPUTER SCIENCE F/76 1271
A FAST ALGORITHM FOR FINDING DOMINATORS IN A FLOW GRAPH: (U)

MAR 78 T LENGAVER: R E TARJAN NO0O14=76-C=0688
UNCLASSIFIED STAN=CS=T78-650

i = lag 2
I""-‘l—:—_‘z‘o— f&? “m% 22

e =
o 7

&
122 it s

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARL A

,AST ALGOR ITHM FOR FINDING _DOMINATORS INA FLOW GRAPH (

, by
70) .
lhomas/'iengauer am Robert Endre Aarjan k

STAN-CS-78-650

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences
STANFORD UNIVERSITY

& iy o= =9 45, ek nesre 24

- has be: uro:;"CT
for public relcase and sdh :
distribution is unlimited,

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

fraiysis & (lgo

READ INSTRUCTIONS

. REPORT DOCUMENTATION PAGE - BEFORE COMPLETING FORM

1. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER
CS—(uSO

4. TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED

111\ v"V\i)

A— }&.ﬁb U\C\b\(: L NA%N g’b‘ g“\.\.\d'&;»u\ &bm\\\v\'\'ﬁ"‘b. ‘l\ 6. PERFORMING ORG. REPORT NU
- o Klow Cfap»~ - SFAN -5 - 16 ~e5o

MBER

(-
Twhewmas kca/\.\u\aww = beﬁx*,Tur\MA Nzoo (4 =1 -C ~0b¥ 3

7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(Ss)

SxausocX | CA

v
9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK
& il °\ - AREA & WORK UNIT NUMBERS
Shoons ks~ & K)}V\\ QNS i
Coamy S §

SKasndpc& | CH Guaog
11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

—(\I\B—V\«m € '\-—\(.\ug__r Q-{od‘ck \C\T 6

13. NUMBER OF PAGES

14. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Olfice) 15. SECURITY CLASS. (of this report)

SCHEDULE

15a. DECL ASSIFICATION/ DOWNGRADING

16. DISTRIBUTION STATEMENT (of this Report)

}&da,ocao.b(u_. \&M (,.L.w\'.'buh-o-xs, o c(mm\w

17. DISTRIEUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if nocessary and identify by block number)

20. ABSTRACT (Conlln3 on reverse side if necessary and identity by block number)

STAN-CS-T78-650 FAST ALGORITHM FOR FINDING DOMINATORS IN A FLOW GRAPH
Author: as Lengauer & Robert E. Tarjan

This paper presents a fast algorithm for finding dominators in a flow graph. The
algorithm uses depth-first search and an efficient method of computing functions defined on
paths in trees. A simple implementation of the algorithm runs in O(m log n) time, where
m is the number of edges and n is the number of vertices in the problem graph. A
sophisticated implementation runs in O(m o (m,n)) time, where o (m,n) is a functional inverse
of Ackermann's function. | S L gpe— |

Both versions of the algorithm were implemented in Algol H’

a~8%antard Unjversity'--
w, and tested on an IBM 370/168. The programs were compared with an im-
FOR : plemenation by Purdom and Moore of a straightforward O(mn) ~time algorithm, and with a bit
DD 1 JAN vector algorithm,desceribed-by-tho-and-tiiman,. The fast algorithm beat the straighforward
algorithm and the bit vector algorithm on all but the smallest graphs tests.

No. of pages: Lo .

e e

ata Entered)

A A W T T T ¥ sl i —ETT

e

e Y

A Fast Algorithm for Finding Dominators

in a Flow Graph

*
Thomas Lengauer—/
™
Robert Endre Tarjan
Computer Science Department

Stanford University
Stanford, California 94305

Abstract.

This paper presents a fast algorithm for finding dominators in a
flow graph. The algorithm uses depth-first search and an efficient method
of camputing functions defined on paths in trees. A simple implementation
of the algorithm runs in O(m log n) time, where m is the number of
edges and n 1is the number of vertices in the problem graph. A more
sophisticated implementation runs in O(m a(m,n)) time, where a(m,n)
is a functional inverse of Ackermann's function.

Both versions of the algorithm were implemented in Algol W, a Stanford
University version of Algol, and tested on an IBM 370/168. The programs
were compared with an implementation by Purdom and Moore of a straightforward
O(mn) -time algorithm, and with a bit vector algorithm described by Aho and
Ullman. The fast algorithm beat the straightforward algorithm and the bit
vector algorithm on all but the smallest graphs tested.

Keywords: depth-first search, dominators, global flow analysis,
graph algorithm, path compression.

N
~/ Supported by the German Academic Exchange Service.

fﬁ/This research was supported in part by National Science Foundation grant
MCS75-22870 and by Office of Naval Research contract NOOOlk-76-C-0688.
Reproduction in whole or in part is permitted for any purpose of the
United States govermnment.

2. Introduction.

The following graph problem arises in the study of global flow
analysis and program optimization [2,6]. Let G = (V,E,r) be a flow
graph with start vertex r .i/ A vertex v dominates another vertex
w# v in G if every path from r to w contains v . Vertex v

is the immediate dominator of w , denoted v = idom(w) , if v

dominates w and every other dominator of w dominates v .

Theorem 1 [2,6]. Every vertex of a flow graph G = (V,E,r) except r
has a unique immediate dominator. The edges {(idom(w),w) |we V-{r}}

‘ form a directed tree rooted at r , called the dominator tree of G,

such that v dominates w if and only if v 1is a proper ancestor
of w in the dominator tree., See Figures 1 and 2.
[Figure 1]

[Figure 2]

We wish to construct the dominator tree of an arbitrary flow graph G .

Aho and Ullman [2] and Purdom and Moore [7] describe a straightforward
| algorithm for solving this problem. For each vertex v # r , we carry

out the following step:

General Stgp: Determine, by means of a search from r , the set S of
vertices reachable from r by paths which avoid v , The

vertices in V-{v}-S are exactly those which v dominates.

Knowing the set of vertices dominated by each vertex, it is an easy matter

to construct the dominator tree.

* ;
-/ Appendix A contains the graph-theoretic terminology used in this paper.

b AN

To analyze the running time of this algorithm, let us assume that
G has m edges and n vertices, Each execution of the general step
requires O(m) time, and the algorithm performs n-1 executions of the
general step; thus the algorithm requires O(mn) time total.

Aho and Ullman [3] describe another simple algorithm for computing
dominators. This algorithm manipulates bit vectors of length n . Each
vertex v has a bit vector which encodes a superset of the dominators
of v . The algorithm makes several passes over the graph, updating
the bit vectors during each pass, until no further changes to the bit
vectors occur. The bit vector for each vertex v then encodes the
dominators of v .

This algorithm requires O(m) bit vector operations per pass for
0(n) passes, or O(nm) bit vector operations total. Since each bit
vector operation requires O(n) time, the running time of the algorithm
is O(n2m) . This bound is pessimistic, however; the constant factor
associated with the bit vector operations is very small, and on typical
graphs representing real programs the number of passes is small (on
reducible flow graphs [3] only two passes are required [L]).

In this paper we shall describe a faster algorithm for solving the
dominators problem, The algorithm uses depth-first search [9] in
combination with a data structure for evaluating functions defined on
paths in trees [13]. We present a simple implementation of the algorithm
which runs in O(m log n) time and a more sophisticated implementation
which runs in O(m a(m,n)) time, where a(m,n) is a functional inverse

of Ackermanmn's function.

L AN, T s sy oy oY o R eSS N

The algorithm is a refinement of earlier versions appearing in
[10,11,12]., Although proving its correctness and verifying its running
time require rather complicated analysis, the algorithm is quite simple
to program and is very fast in practice. We programmed both versions of
the-algorithm in Algol W, a Stanford University version of Algol, and
tested the programs on an IBM 570/168. We compared the programs with
a transcription into Algol W of the Purdom - Moore algorithm and with
an implementation of the bit vector algorithm. On all but the smallest
graphs tested our algorithm beat the other methods.

The paper consists of five sections. Section 2 describes the
properties of depth-first search used by the algorithm and proves
several theorems which imply the correctness of the algorithm, Some
knowledge of depth-first search as described in [9] and Section 2 of [10]
is useful for understanding this section. Section 3 develops the
algorithm, using as primitives two procedures that manipulate trees.
Section 4 discusses two implementations, simple and sophisticated, of
these tree manipulation primitives. Some knowledge of Sections 1, 2,
and 5 of [13] is useful for understanding this section. Section 5

presents our experimental results.

2. Depth-First Search and Dominators.

Suppose we perform a depth-first search on a flow graph G = (V,E,r)
starting from vertex r , and that we number the vertices of G from 1
to n as they are reached during the search. The search generates a
spanning tree T rooted at r , with vertices numbered in preorder [5].
See Figure 3.

[Figure 3]
The following paths lemma is an important property of depth-first

search and is crucial to the correctness of the dominators algorithm,

Lema 1 [9]. If v and w are vertices of G such that
number(v) < number(w) , then any path from v to w in G must

contain a common ancestor of v and w in T .

As an intermediate step, the dominators algorithm computes a value
for each vertex w * r called its semi-dominator, denoted by sdom(w)

and cdefined by

(1) sdom(w) = min{number(v) | there is a path v = VgsVyseeesVy = W such

that number(vi) > number(w) for 1 <i < k-1} .

See Figure 3,
The following lemmas describe some basic properties of semi-dominators

and immediate dominators.

Lemma 2. For any vertex w # r , let v Dbe the vertex such that

number(v) = sdom(w) . Then v is a proper ancestor of w in T .

Proof., Let parent(w) be the parent of w in T . Since (parent(w),w) is

an edge of G, by (1) number(v) = sdom(w) < number(parent(w)) < number(w) .

By (1) and the choice of v , there is a path v = Vs VyseeesVy = W
such that number(vi) > number(w) for 1<i<k-1. By Lemma 1, some
vertex v, on the path is a common ancestor of v and w . But such
a common ancestor v, must satisfy number(vi) < number(v) . This

means i =0, i.e., vy =V, and Vv 1is a proper ancestor of w . O

Lemma 3%, For any vertex w# r , let v be the vertex such that

nunber(v) = sdom(w) . Then idom(w) is an ancestor of v in T .

Proof., The tree path from r to w contains only ancestors of w in T .
Thus id__om(w) is an ancestor of w . The path consisting of the tree

path from r to v followed by a path v = VgrVysreeosVy = W such that
number(vi) > number(w) for 1< i < k-1 (which must exist by (1))

avoids all proper descendants of v which are also proper ancestors

of w . It follows that idom(w) is an ancestor of v . [

*
Corollary 1. For any vertex w# r , idom(w) -w .

* *
Lemma. L4, Let vertices v, w satisfy v -w in T . Then v - idom(w)

*
or idom(w) — idom(v) .

Proof. Let X be any proper descendant of idom(v) which is also a
proper ancestor of v ., By Theorem 1 and Corollary 1, there is a path
from r +to v which avoids x . By concatenating this path with the

tree path from v to w, we obtain a path from r to w which avoids x'.

Thus idom(w) must be either a descendant of v or an ancestor of

idom(v) . O

Using Lemmas 1 -4, we obtain two results which provide a way to

compute immediate dominators from semi-dominators.

Theorem 2. Let w# r and let v be the vertex such that

number(v)

sdom(w) ., Suppose no vertex wu satisfies

*
number (u) > number(v) , u -w, and sdom(u) < sdom(w) . Then

idom(w) =

<

Proof. By Lemma 3, it suffices to show that v dominates w . Consider
any path from r to w . Let x be the last vertex on this path

satisfying number(x) < number(v) . If there is no such x , then v = r

dominates w . Otherwise, let y be the first vertex following x on
the path and satisfying v p y % w . All vertices =z following x on

the path but preceeding y must satisfy z >y by Lemma 1 and the

choice of x and y . Thus sdom(y) < number(x) < number(v) = sdom(w) .
By the hypothesis of the theorem, y cannot be a proper descendant of v .
Thus y = v and v lies on the path. Since the path selected was

arbitrary, v dominates w . 0O

Theorem 3. Let w# r and let v be the vertex such that

number(v) = sdom(w) . Let wu be a vertex for which sdom(u) is minimum
*

among vertices satisfying number(u) > number(v) and u —-w . Then

sdom(u) < sdom(w) and idom(u) = idom(w) .

B = =S 2 *:Aw__' Ty .-w-r‘-a—n > e

Proof. Let x be the vertex such that v - x = w . Then
sdom(u) < sdom(x) < pumber(v) = sdom(w) .

By Lemma 3, idom(w) is an ancestor of v and thus a proper
ancestor of u . Thus by Lemma 4 idom(w) ! idom(u) . To prove

idom(u) = idom(w) , it suffices to prove that idom(u) dominates w .

Consider any path from r to w . Let x be the last vertex on
this path satisfying number(x) < number(idom(u)) . If there is no
such x , then idom(u) = r dominates w . Otherwise, let y be the
first vertex followang x on the path and satisfying M(u) ~ y L w .
All vertices z following x on the path but preceding y satisfy
number(z) > number(y) by Lemma 1 and the choice of x and y. Thus
sdom(y) < number(x) . Since number(idom(u)) < sdom(u) by Lemma 3, we
have sdom(y) < number(x) < number(idom(u)) < sdom(u) .

By the definition of uw, y camot be a proper descendant of v .
Furthermore y cannot be both a proper descendant of _i_diq_n_(u) and an
ancestor of u , for if this were the case the path consisting of the
tree path from r +to s_d@_(y) followed by a path sdom(y) = VgrVyreeosVyp =¥
such that m(vi) > number(y) for 1 < i < k-1 followed by the tree
path from y to u would avoid idom(u) ; but no path from r to u
avoids idom(u) .

The only remaining possibility is that idom(u) =y . Thus idom(u)
lies on the path from r to w . Since the path selected was arbitrary,

idom(u) dominates w . O

Corollary 2. Let w# r and let v be the vertex such that
number(v) = sdom(w) . Let u be a vertex for which sdom(u) is
minimum among vertices satisfying number(u) > number(v) and u iw .
Then

v if sdom(w) = sdom(u) ,

(2) idom(w) =
idom(u) otherwise.

Proof. Immediate from Theorems 2 and 3. O
The following theorem provides a way to compute semi-dominators.
Theorem L4, For any vertex w# r,

(3) sdom(w) = min({number(v) | (vyw) ¢ E and number(v) < number (w) }
U {sdom(u) | number(u) > number(w) and there is

edge (v,w) such that u %V in T3P

Proof. Let ¢ equal the right side of (3). We shall first prove that
sdom(w) < £ . Suppose [= number(v) for some vertex v such that
(vyw) ¢ E and number(v) < number(w) . By (1) sdom(w) < £ . Suppose
on the other hand / = sdom(u) for some vertex u such that

number (u) > number(w) and there is an edge (v,w) such that u . ¥ .
Let x be the vertex such that number(x) = sdom(u) . By (1) there is
a path X = VosViseees Vs

J!

for 1 <1< j-1. The tree path u=vj-vj+l—~... R

satisfies number(v,) > number(w) > number(w) for Jj < i < k-1. Thus

= u such that number(v;) > number(u) > number(w)

the path x = VorVyreeor Vi1 =V Vi

for 1<i<k-1. By (1), sdom(w) < mmber(x) = sdom(u) = £ .

= w satisfies number(vi) > number(w)

It remains for us to prove that sdom(w) > £ . Let x be the
vertex such that number(x) = sdom(w) , and let x = VgrVyseeesVy = W
be a simple path such that M(vi) > number(w) for 1<i<k-1.
If k=1, (xw)ecE, and number(x) < number(w) by Lemma 2. Thus
sdom(w) = number(x) > £ . Suppose on the other hand that k >1 .
Let J be minimum such that j > 1 and vj ivk-l . Such a J exists
since k-1 is a candidate for J .

We claim number(vi) = number(vj) for 1<i< j-1. Suppose to
the contrary that number(vi) < number(vj) for some i in the range
1<i<J-1., Choose the 1 such that 1<i < j-1 and number(vi)
is minimum, By Lemma 1, Vi i vj » which contradicts the choice of j .
This proves the claim,

The claim implies sdom(w) = number(x) > _silg;n(vj) > 1 . Thus
vhether k=1 or k >1 we have sdom(w) > £, and the theorem is

true., 0O

10

e A Fast Dominators Algorithm,

In this section we develop an algorithm which uses the results in
Section 2 to find dominators. Earlier versions of the algorithm appear
in [10,11,12]; the version we present is refined to the point where it is
as simple to program as the straightforward algorithm [2,7] or the bit vector
algorithm [3,4], similar in speed on small graphs, and much faster on large graphs.

The algorithm consists of the following four steps.

Step 1. Carry out a depth-first search of the problem graph. Number
the vertices from 1 to n as they are reached during the
search, For each vertex w , determine the set pred(w) of
vertices v such that (v,w) is an edge and the vertex
parent(w) which is the parent of w in the spanning tree
generated by the search. Initialize the variables used in
succeeding steps.

Step 2. Compute the semi-dominators of all vertices by applying Theorem L,
Carry out the computation vertex-by-vertex in decreasing order
by number.,

Step 3. Implicitly define the immediate dominator of each vertex by
applying Corollary 2.

Step L. Explicitly define the immediate dominator of each vertex, carrying
out the computation vertex-by-vertex in increasing order by

number,

Here is an Algol-like version of Step 1.

stepl: n := 0j
for each veV ggp_red(v) = p; semi(v) = O od;

DFs(r);

Step 1 uses the recursive procedure DFS, defined below, to carry
out the depth-first search. The procedure assumes that succ(v) is
the set of vertices w such that (v,w)ecE . When a vertex v receives

a number i , the procedure assigns semi(v) := i and vertex(i) := v .

procedure DFS(vertex v);
semi(v) :=n := ntl;
vertex(n) := v;
comment initialize variables for steps 2, 3, and k;

for each we suce(v) do
NN — ~~

~~~

if semi(w) = O then parent(w) := v; DFS(w) fi;
add v to pred(w) od
end DFS;

After carrying out Step 1, the algorithm carries out Steps 2 and 3
simultaneously, processing the vertices v # r in decreasing order by number,
When processing a vertex v , the algorithm computes igg_n(v) by applying
Theorem 4. Each edge (u,v) is examined, If number(u) < number(v) ,
number (u) is a candidate for sdom(v) . If number(u) > number(v) , the
algorithm finds a vertex x of minimum Eg_ogl_(x) among vertices satisfying
number(x) > number(v) and x o) ; sdom(x) is a candidate for
sdom(v) . The minimum of all the candidates is sdom(v) . After
computing sdom(v) , the algorithm assigns semi(v) := sdom(v) and adds
vertex v to the set bucket(u) , where u is the vertex such that

number (u) = sdom(v) . This completes Step 2 for v . Note that before

sdom(v) is found, semi(v) = number(v) , and after sdom(v) is found,

semi(v) = sdom(v) .




After the semi-dominator of v 1is computed, the algorithm empties

bucket (parent(v)) . For each vertex w e bucket(parent(v)) , the algorithm

finds a vertex u of minimum sdom(u) among vertices satisfying

a6
number (u) > number(parent(v)) and u -w . If sdom(u) = sdom(w) ,

then by Corollary 2 the immediate dominator of w 1is m(v) ,» and
the algorithm assigns dom(w) := parent(v) . If sdom(u) < sdom(w) ,
then by Corollary 2, u and w have the same immediate dominator, and
the algorithm assigns dom(w) := u . The intent of this assignment

is to implicitly define the immediate dominator of w to be the
immediate dominator of a vertex with smaller semi-dominator than w .

This completes Step 3 for vertices w e bucket(parent(v)) .

Both Step 2 and Step 3 require determining, for certain paths v o w
in the spanning tree, a vertex wu on the path v i w having minimum
sdom(u) . To find such vertices the algorithm uses a method described
in [10]. The algorithm maintains a data structure which represents a
forest with vertex set V and edge set {(parent(v),v) | sdom(v) has been

computed} . To manipulate this data structure, the algorithm uses two

procedures:
LINK(v,w): Add edge (v,w) to the forest,
EVAL(v): If v is the root of a tree in the forest, return v .

Otherwise, let r be the root of the tree in the forest
which contains v . Return a vertex u # r of minimum

*
sdom(u) on the path r —= v in the forest.

13




Here is an Algol-like version of Steps 2 and 3 which uses LINK

and EVAL.

comment initialize variables;
ONININININININS

ford-mpy-lmele g
v := vertex(i);

step2: for each ue pred(v) do
TN mian()s Af semi(x) < semi(v) then semi(v) = semi(x) o8
LINK(parent(v),v);

add v to bucket (vertex(semi(v));
step3: for each we bucket(parent(v)) do

~r

delete w from bucket (parent(v));

u := EVAL(w);

don(w) := 1f semi(u) < semi(perent(v)) then u
<lse parent(v) £ of of;

Step 4 examines vertices in increasing order by number, filling in
the immediate dominztors not explicitly computed by Step 3. Here is an

Algol-like version of Step L.

steph: for i := 2 until n do
v := vertex(i);

}id;om(v) # vertex(semi(v)) then dom(v) := dom(dom(v)) od;

This completes our presentation of the algorithm except for the
implementation of LINK and EVAL. Figure 4 illustrates how the algorithm
works.

[Figure L]

Appendix B contains a complete Algol-like version of the algorithm,

including variable declarations and initialization. Using Theorem 4 and

Corollary 2 it is not hard to prove that, after execution of the algorithm,

1k




dom(v) = idom(v) for each vertex v # r , assuming that LINK and EVAL
perform as claimed. The running time of the algorithm is O(mtn)

plus time for n-1 LINK and m+n-1 EVAL instructions.

15




L.  Implementation of LINK and EVAL.

Reference [13] provides two ways to implement LINK and EVAL, one
simple and one sophisticated. We shall not discuss the details of these
methods here, but merely provide Algol-like implementations of LINK and
EVAL which are adapted from [13].

The simple method uses path compression to carry out EVAL. To

represent the forest built by the LINK instructions (henceforth called

the forest), the algorithm uses two arrays, ancestor and label.

Tnitially ancestor(v) = O and label(v) = v for each vertex v .
In general ancestor(v) = O only if v is a tree root in the forest;
otherwise ancestor(v) is an ancestor of v in the forest.

The algorithm maintains the labels so that they satisfy the following
property. Let v be any vertex, let r be the root of the tree in
the forest containing v , and let v = Vir Vi q2eesVg = T be such
that ancestor(vi) =V for 1<i<k. Let x be a vertex such
that sdom(x) is minimm among vertices xe {label(v,) |1 <1 <k} .

Then

(¥) x is a vertex such that sdom(x) is minimum among vertices x

+ *
satisfying r - x - v in the forest.

To carry out LINK(v,w) , the algorithm assigns ancestor(w) := v .
To carry out EVAL(v) , the algorithm follows ancestor pointers to
determine the sequence v = Vg Vg qpreeesVg =T such that

ancestor(vi) = Vi1 for 1<i<k. If var, v is returned.

Otherwise, the algorithm performs a path compression by assigning

ancestor(vi) i=r for z < i<k, updating labels to maintain ().

Then label(v) is returned. Here is an Algol-like procedure for EVAL.

16

S o ==Y A ———— T aikus » -




vertex procedure EVAL(V);

if ancestor(v) = O then EVAL := v
else COMPRESS(v); EVAL := label(v) fi;

Recursive procedure COMPRESS, which carries out the path compression,

is defined by

procedure COMPRESS(V)3;
comment this procedure assumes ancestor(v) # 0;
if ancestor(ancestor(v)) # O then
COMPRESS(ancestor(v));

if semi(label(ancestor(v))) < semi(label(v)) then

label(v) := label(ancestor(v)) fi;

ancestor(v) := ancestor(ancestor(v)) fi;

The time required for n-1 LINKs and mtn-1 EVALsS using this
implementation is O(m log n) [13]. Thus the simple version of the
dominators algorithm requires O(m log n) time,

The sophisticated method uses path compression to carry out the
EVAL instructions but implements the LINK instruction so that path
compression is carried out only on balanced trees. See [13]. The

sophisticated method requires two additional arrays, size and child.

Initially size(v) = 1 and child(v) = O for all vertices v . Here
are Algol-like implementations of EVAL and LINK using the sophisticated

method. These procedures are adapted from [13],

17




vertex procedure EVAL(v);
comment procedure COMPRESS used here is identical to that in the
simple method;
if ancestor(v) = 0 then EVAL := label(v)
e EEEE‘COMPRESS(v);
EVAL := iflsemi(label(ancestor(v))) > semi(label(v)) EEEE‘}EEEL(V)

else label(ancestor(v)) fi fi;

A~~~

procedure LINK(v,w);
begin

comment this procedure assumes for convenience that
size(0) = label(0) = semi(0) = 03
5 = W3
wﬁﬂiﬁn;i(;a_bg;(w)) < semi(label(child(s))) do
if size(s)+ size(child(child(s))) > 2* size(child(s)) then

parent (child(s)) := s; child(s) := child(child(s))

else size(child(s)) := size(s);

s := parent(s) := child(s) fi od;
label(s) := label(w);

size(v) := size(v)+ size(w);
if size(v) < 2" size(w) then s,child(v) := child(v),s fi;

while s # O do parent(s) := v; s := child(s) od
end LINK;

With this implementation, the time required for n-1 LINKs and m+n-1
EVALs is O(m o(m,n)) , where « is a functional inverse of Ackermann's
function [1], defined as follows, For integers i,j >0 , let A(i,0) = O
if i >0, A(0,)) = od 1r 3 >3, Aa(i,1) = a(i-1,2) 4 131,
and A(i,3) = A(i-1,A(i,j-1)) if 1 >1, j>2, Then
a(myn) = minf{i >1|A(i,|2m/n]) > log, n} . Thus the sophisticated

version of the dominators algorithm requires O(m a(myn)) time.

18

e ———— o e — i e |




i Implementation and Experimental Results.

We translated both versions of the algorithm as contained in
Appendix B into Algol W and ran the programs on a series of randomly
generated program flow graphs. Table 1 and Figures 5 and 6 illustrate
the results. The sophisticated version beat the simple version on all
graphs tested. The relative difference in speed was between 5 and 25%,
increasing with increasing n .

[Table 1]
[Figure 5]
[Figure 6]

We transcribed the Purdom - Moore algorithm into Algol W and ran it
and the sophisticated version of our algorithm on another series of
program flow graphs., Table 2 and Figure 7 show the results. Our algorithm
was faster on all graphs tested except those with n = 8 . The
Purdom - Moore algorithm rapidly became non-competitive as n increased.
The trade-off point was about n = 10 .,

[Table 2]
[Figure 7]

We implemented the bit vector algorithm using a set of procedures
for manipulating multi-precision bit vectors. (Algol W allows bit vectors
only of length 32 or less.) Table 3 gives the running time of this
algorithm on the second series of test graphs, and Figure 8 compares the
running times of the bit vector algorithm and the sophisticated version
of our algorithm. The speed of the bit vector algorithm varied depending
upon the number of passes required, but it was always slower than the

fast algorithm,

19




[Table 3]
[Figure 8]

There are several ways in which the bit vector algorithm can be made
more competitive. First, the bit vector procedures can be inserted
in-line to save the overhead of procedure calls. We made this change and
observed a 33 - 45% speed-up. The corresponding change in the fast
algorithm, inserting LINK and EVAL in-line, produced a 20% speed-up.

These changes made the bit vector algorithm almost as fast as our algorithm
on graphs of less than %2 vertices, but on larger graphs the bit vector
algorithm remained substantially slower than our algorithm. See Table 1,
Table 4, and Figure 9.

[Table 4]

[Figure 9]

Second, the bit vector procedures can be written in assembly language.
To provide a fair comparison with the fast algorithm it would be necessary
to write LINK and EVAL in assembly language. We did not try this approach,
but we believe that the fast algorithm would still beat the bit vector
algorithm on graphs of moderate size.

Third, use of the bit vector algorithm can be restricted to graphs
known to be reducible., On a reducible graph only one pass of the bit
vector algorithm is necessary, because the only purpose served by the
second pass is to prove that the bit vectors don't change, a fact
guaranteed by the reducibility of the graph. We believe that a one-pass
in-line bit vector algorithm would be competitiv: with the fast algorithm
on reducible graphs of moderate size, but only if one ignores the time

needed to test reducibility.

20




The bit vector algorithm has two disadvantages not possessed by the
fast algorithm. First, it requires O(ng) storage, which may be
prohibitive for large values of n . Second, the dominator tree, not
the dominator relation, is required for many kinds of global flow analysis
[8,14], but the bit vector algorithm computes only the dominator relation.
Camputing the relation from the tree is easy, requiring constant time per
element of the relation or 0O(n) bit vector operations total. However,
computing the tree from bit vectors encoding the relation requires O(n2)
time in the worst case.

We can sumarize the good and bad points of the three algorithms as
follows: the Purdom - Moore algorithm is easy to explain and easy to
program but slow on all but small graphs. The bit vector algorithm is
equally easy to explain and program, faster than the Purdom - Moore algorithm,
but not competitive in speed with the fast algorithm unless it is run on
small graphs which are reducible or aglmost reducible. The fast algorithm
is much harder to prove correct but almost as easy to program as the other
two algorithms, competitive in speed on small graphs, and much faster on
large graphs. We favor some version of the fast algorithm for practical
applications.

We conclude with a few comments on ways to improve the efficiency of
the fast algorithm. One can speed up the algorithm by rewriting DFS and
COMPRESS as non-recursive procedures which use explicit stacks. One can
avoid using an auxiliary stack for COMPRESS by instead using a trick of
reversing ancestor pointers; see [12], A similar trick allows one to avoid

the use of an auxiliary stack for DFS. One can save some additional storage

by combining certain arrays, such as parent and ancestor. These modifications

save running time and storage space, but only at the expense of program clarity.

el




Appendix A:  Graph-Theoretic Terminology.

A directed graph G = (V,E) consists of a finite set VvV of

vertices and a set E of ordered pairs (v,w) of distinct vertices,

called edges. If (vow) is an edge, w 1is a successor of v and Vv

is a predecessor of w . A graph G = (Vl,El) is a subgraph of G

if Vi cV and El cE. Apath p of length k from v to w

in @ is a sequence of vertices p= (v = Vs ViseeasVy = w) such that

(Vi’vi+l)€ E for 0<1i<k. The path is simple if v,,...,v, are

distinct (except possibly Vo = Y ) and the path is a cycle if Vo = Vi -

By convention there is a path of no edges from every vertex to itself

but a cycle must contain at least two edges. A graph is acyclic if it

contains no cycles, If Py = (u = UppUyseeery = v) is a path from u

to v and p = (v = VgrVyseeesV, = w) is a path from v to w , the

path p, followed by p, is p = (u = UgpUyseeesty =V = Vs ViseeasV, = w) .
A flow graph G = (V,E,r) is a directed graph (V,E) with a

distinguished start vertex r such that for any vertex veV there is

P

a path from r %o v . A program flow graph is a flow graph such that

each vertex has exactly two successors, A (directed, rooted) tree

T = (V,E,r) is a flow graph such that |E| = |V|-1 . The start vertex

r is the root of tae tree. Any tree is acyclic, and if v 1s any vertex

in a tree T , there is a unique path from r to v . If v and w

are vertices in a tree T and there is a path from v to w, then v is
an ancestor of w and w is a descendant of v (denoted by v - w ) If

in addition v # w, then v 1is a proper ancestor of w and w is a

*
proper descendant of v (denoted by v Lw Yo If v »w and (v,w)
is an edge of T (denoted by v - w ), then v is the parent of w

and w ig a child of v . In a tree each vertex has a unique parent

e2

—— e A e s e vin - s = —a » - .
- e —— e TS i D S R e w3 W . % 4




(except the root, which has no parent). If G = (V,E) is a graph

and T

]

(V',E',2) is a tree such that (V',E') is a subgraph of G

and V=V', then T is a spanning tree of G .

23




Appendix B: The Complete Dominators Algorithm,

This appendix contains a complete listing of both versions of the

dominators algorithm. The algorithm assumes that the vertex set of the

problem graph is V= {v|l1<v<n}.

procedure DOMINATORS(integer set array succ(l::n); integer r,n;

integer array dom(l::n));

begin
integer array parent, ancestor, [child, ] vertex (1::n);
integer array label, semi [,size] (0::n);
integer gggﬁz;ray pred, bucket (1::n);
integer ;:;;x;

procedure DFS(integer v);

begin
semi(v) := n := n+l;
vertex(n) := label(v) := Vv;

ancestor(v) := [child(v) :=] 0;

[size(v) := 1;]

for each we
ONINININY

A~~~

suce(v) do

if semi(w) = O then parent(w) := v; DFS(w) fi;

add v to pred(w) od
end DFS;

procedure COMPRESS (integer v);

if ancestor(ancestor(v)) # O then
COMPRESS (ancestor(v));

if semi(label(ancestor(v))) < semi(label(v)) then

label(v) := label(ancestor(v)) fij;

ancestor(v) :

ancestor (ancestor(v)) fi;

integer procedure EVAL(integer v);
O then EVAL
else COMPRESS(v); EVAL := label(v) fi;

if ancestor(v) v

24

R —

b ——




. —————

procedure LINK(integer v,w);

ancestor(w) := v;

steEl: for v := 1 until n do

OO e e

pred(v) := bucket(v) := f; semi(v) := O od;

——

n=00
DFS(r);
[size(0) := label(0) := semi(0) := 0;]
for i := n by -1 until 2 do
Lara ol N~ NN ~eo
v := vertex(i);

step2: for each ue pred(v) do

X := EVAL(u); if semi(x) < semi(v) then semi(v) := semi(x) od;
LINK(parent (v),v);

add v to bucket(vertex(semi(v)));

step3: EEEIEEEE‘We'bucket(parent(v)) do
delete w from bucket(parent(v));
u := EVAL(w);
dom(w) := if semi(u) < semi(parent(v)) then u

else parent(v) fi od od;

steph: i := 2 until n do

AN A

v := vertex(i);
if dom(v) # vertex(semi(v)) then dom(v) := dom(dom(v)) od

end. DOMINATORS;

~

The simple version of the algorithm consists of the procedure above,
with everything in brackets deleted. The sophisticated version of the
algorithm consists of the procedure above, with everything in brackets

included, and the following procedures substituted for EVAL and LINK.

integer procedure EVAL(EEESger v);
if ancestor(v) = 0 EEEETE§AL = label(v)
else COMPRESS (v);
EVAL := i{lsemi(label(ancestor(v))) > semi (label(v)) EEEE’lgggi(v)
Elfs‘label(ancestor(v)) fi fi;

25




procedure LINK(integer v,w);
bNe&:i\.’rL integer s;
s = W
while semi (label(w)) < seml(label(chlld(s))) do

1f size(s) + size(child(child(s))) > o* s1ze(ch11d(s)) then
ancestor(child(s)) := s; child(s) := chlld(chlld(s))

else size(child(s)) := size(s);
s := ancestor(s) := child(s) fi od;
label(s) := label(w);
size(v) := size(v)+ size(w);
if size(v) < 2* size(w) then s,child(v) := child(v),s fi;
while s £0 Egancestor(s) := v; s := child(s) od
EEE: LINK;
26
T TR ————




(2]

(3]

[4)

(6]

(7]

(9]

[10]

(11]

[12]

[13)

(1k]

References

W. Ackermann, "Zum Hilbertschen Aufbau der reellen Zahlen," Math.

Ann, 99 (1928), 118-133.
A. V. Aho and J. D. Ullman, The Theory of Parsing, Translation, and

Compiling: Volume II: Compiling, Prentice-Hall, Englewood Cliffs,
N.J. (1972).

A. V. Aho and J. D. Ullman, Principles of Compiler Design, Addison-
Wesley, Reading, Mass. (1977).

M. S. Hecht and J. D. Ullman, "A simple algorithm for global data
flow analysis problems," SIAM J. Comput. 4 (1973), 519-532.

D. E. Knuth, The Art of Computer Programming, Volume 1: Fundamental

Algorithms, Addison-Wesley, Reading, Mass., 1968.

E. S. Lorry and C. W. Medlock, "Object code optimization,"
Communications ACM 12 (1969), 13-22.

P. W. Purdom and E. F. Moore, "Algorithm 430: immediate predominators
in a directed graph," Communications ACM 15 (1972), 777-778.

J. Reif, "Combinatorial aspects of symbolic program analysis," TR-11-TT,
Center for Research in Computing Technology, Harvard University (1977).

R. E. Tarjan, "Depth-first search and linear graph algorithms,"

SIAM J. Computing 1 (1972), 146-160.,

R. Tarjan, "Finding dominators in directed graphs," SIAM J. Computing
3 (197%), 62-89.

R. E. Tarjan, "Edge-disjoint spanning trees, dominators, and depth-
first search," Technical Report STAN-CS-T4-455, Computer Science
Department, Stanford University (197L4).

R. E. Tarjan, "Applications of path compression on balanced trees,"
Technical Report STAN-CS-75-512, Computer Science Department,
Stanford University (1975).

R. E. Tarjan, "Applications of path compression on balanced trees,"
Journal ACM, submitted.

R. E. Tarjan, "Solving path problems on directed graphs," Technical
Report STAN-CS-528, Computer Science Department, Stanford University

(1975).

27




Figure 1. A flow graph.

28

T T G e —— e ——— oo i s thadng o oo y ) sanan
e : oz ¥ T e —




G

Figure 2, Dominator tree of flow graph in Figure 1.

29




Figure 3. Depth-~first search of flow graph in Figure 1.

Solid edges are spanning tree edges, dashed edges are
non-tree edges.
First number in parentheses is vertex number, second

is semi-dominator.

30

e — A S A ] T Y T —R Y ———————




() (8- (3) -

(») (,1) (d) (1)
|

{g,-)

Q (12, 8) (p) (12,8)

(D) 13,12) (1) (13,12)

(a) (b)

(3) (8,-)
E)on ) @,

(10,1) Q (12,8)

(1) (13,12)

(e)

Figure 4, Forest maintained by LINK and EVAL during steps 2 and 3 of the
dominators algorithm. (Trees in the forest consisting of
single vertices are not shown.)

(a) Before vertex H is processed, Candidates for sdom(H)
are 9 = number(E) and 1 = min{sdom(v) | B v 2 L] .
(b) Before vertex E is processed. Candidates for sdam(E)
are 8 = number(B) and 1 = min{sdom(v) | E tva H} .
After sdom(E) = 1 is computed, bucket(B) is unloaded.
At this time D is the only element of bucket(B) .
A is the vertex such that sdom(A) = min{sdom(v) |B % a %D} .
Since sdom(A) = 1 < sdom(D) = 8, dom(D) is assigned
dom(D) := A . Note that idom(D) = idom(A) = R .
(c) After E is processed,

i

> « 48 4




30 +

25 4

204

Time

15 1

10 +

sophisticated

Figure 5.

T \J T v v Y

10 20 30 40 50 60 70 86 9o Too

Running times in 10'3 seconds of the simple and sophisticated
versions of the fast algorithm.

32

L e T Ty ry e S —————— D)




300 -

250 o

200 <

150 1

Time

00 <
sophisticated

]

s | T L g - T \J T B

0 100 200 300" Loo 500 600 700 800 960 1000
n

Figure 6. Running times in lO°3 seconds of the simple and
sophisticated versions of the fast algorithm.

33




70

60 A

50 1

Time

30 S

20 A

10 1

Purdom ~ Moore

sophisticated

Figure 7.

10 20 30 4o 50 60

Running times in lO'5 seconds of the Purdom - Moore algorithm
and the sophisticated version of the fast algorithm. '

3




Q0 4
4 passes
80 4
70 -
60 1
/
4
/
50 4 .
/
Time
"ol Aﬁ.s Ses
35 passes
/
/

/

3C 1 /
bit vector, (/1{;asses
20 1
I passes i
% 7
/
/ @ 2 passes
101 sophisticated
O B2 T v T 1 4 v v —l
0 20 Lo 60 80 100 120 140
n
Figure 8. Running times in 1073 seconds of the bit vector algorithm and

the sophisticated version of the fast algorithm.
35

e T - S S e ——————




70 {

60 ;

50 4

L0 4

301

4 passes

4
/2 passes

3 passes

20 1 ,/
/
i v/2 passes
in-line bit vector
104 .
i passes -’ 2 passes
o o
’
in-line sophisticated
0 + + + + + + —
0 20 Lo 60 80 100 120 140

Figure 9. Running times in 10 seconds of the in-line bit vector
algorithm and the in-line sophisticated version of the
fast algorithm.

36




simple sophisticated simple sophisticated

n min max min max n min max min max
10 2.0 2.1 1.9 2.0 200 k6.4 k7.2 36.2 36.L4
20 k.3 L4 G Py ¢ 3.9 300 0.1 7123 550 55.7T
30 6.2 6.8 RS 5.8 400 g98.5 10k Th.7 '78.1
40 8.0 8.8 % 7.6 500 | 123 125 2.0 93.7
50 10,5 11.h 6.9 9.6 600 | 150 152 110 120
60 = 00 TBRRE 2 10,9 “X1l6 700 | 176 181 130 137
70 .6 15:h 12.6 13.1 800 | 21k 217 158 167
80 800 RS S5 900 | 238 2Lk 173 188
90 90.0  20.2 16.T 36,8 1000 | 263 268 192 206
100 f oo,k 22,7 18.0 19,3

Table 1. Running times in 1072 seconds of the simple and sophisticated

versions of the fast algorithm (three graphs for each value

oENn s

37




in-line
sophisticated sophisticated Purdom - Moore
n min max min max min max
8 1.7 1.7 1.k 15 1.3 .k
16 3.0 Bra 2.5 2.6 4.6 IS
2l L4 L5 3.6 L 10.1 10.3
32 5.8 6.1 b 4,8 18.4 18.6
40 2?0 7.6 6.0 6.1 29.4 29.6
48 8.8 9.2 7.0 Tebt 40.8 42,5
56 10 i}l 8.0 3,8 565 58.2
64 12 13 9.3 10.0 74,3 5.5
72 5.2 13.8 10.3 10.9
80 14.9 151 3.8 12.0
88 16.5 17 .k 15.0 13.9
96 i 17.9 14.0 PleS
104 19.3 20.4 154 16.4
112 19.9 20.6 15.9 16.7
120 22.3 23,4 LT 19.0
128 23.5 23.8 18.7 19.2
3

Table 2, Running times in 10~ seconds of the Purdom - Moore algorithm
and the sophisticated version of the fast algorithm (three

graphs for each value of n ).

38

e e e— SR SRS = " T 54 T At S R T ——




bit wvector

e —————— o

n time  passes time  passes time opasses
8 3.2 % 3.4 3 3.4 3
16 6.3 3 6.3 3 6.4 3
2 9.3 3 9.4 3 9.5 3
32 12.4 3 12.4 3 15.7 L
40 12.8 2 12.9 2 abfice 3
48 20.9 3 20.9 3 21.0 5
56 2L.3 5 2L.3 3 2L .3 3
N 27.9 3 28.2 3 28.2 3
72 25.6 2 5.1 3 35.5 3
80 28.6 2 39.2 o 39.6 3
88 43,7 > 43,8 3 Lh,1 3
96 46,6 3 Wr.7 5 k7.7 3
10k 40.6 2 41,0 2 56.0 3
112 43.9 2 43,9 2 61.3 5
120 65.9 3 66.0 3 66.6 3
128 795 3 1A 5 91.5 b

3

Table 3. Running times in 10~ seconds and number of passes
of the bit vector algorithm (three graphs for each

value of n ).

24




in-line bit vector

n time passes time passes time - passes
8 1.8 3 1.8 3 1.9 3
16 L 1%, 3 3.4 3 3.4 3
2k 4.9 3 540 3 Bel 3
32 6.k 3 6.5 3 79 L
Lo T 2 Tl 2 10.1 5
L8 12.% 3 12,2 = 12.4 3
56 14,2 % 1L.2 3 14.2 3
n 16.1 3 16,3 ¥ 16.3 %
72 16.8 2 22,4 5 2oL 3
80 18.4 2 2L.7 3 24.8 3
88 g | 3 215 3 27.8 3
9% 29.5 3 29.6 3 29.8 3
10k el 2 272 2 38.1 3
112 30,4 2 30.8 2 41.5 2
120 44,0 3 bh,1 3 4h,3 3
128 46,5 3 46,9 5 60.6 L4

Table 4., Running times in 10

3

seconds and number of passes

of the in-line bit vector algorithm (three graphs for

each value of n ).

Lo

e NG T

%




